The MAX3946 is a +3.3 V , multirate, low-power laser diode driver designed for Ethernet and Fibre Channel transmission systems at data rates up to 11.3Gbps. This device is optimized to drive a differential transmitter optical subassembly (TOSA) with a 25Ω flex circuit. The unique design of the output stage enables use of unmatched TOSAs, greatly reducing headroom limitations and lowering power consumption.
The device receives differential CML-compatible signals with on-chip line termination. It can deliver laser modulation current of up to 80 mA , at an edge speed of 22 ps (20% to 80%), into a 5Ω to 25Ω external differential load. The device is designed to have a symmetrical output stage with on-chip back terminations integrated into its outputs. A high-bandwidth, fully differential signal path is implemented to minimize deterministic jitter. An equalization block can be activated to compensate for the SFP+ connector. The integrated bias circuit provides programmable laser bias current up to 80 mA . Both the laser bias generator and the laser modulator can be disabled from a single pin.

A 3-wire digital interface reduces the pin count and permits adjustment of input equalization, pulse-width adjustment, Tx polarity, Tx deemphasis, modulation current, and bias current without the need for external components. The MAX3946 is available in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 24-pin TQFN package.

Applications
4x/8x FC SFP+ Optical Transceivers
10GFC SFP+ Optical Transceivers
10GBASE-LR SFP+ Optical Transceivers
10GBASE-LRM SFP+ Optical Transceivers
OC192-SR XFP/SFP+ SDH/SONET Transceivers

Features

- 225mW Power Dissipation Enables < 1W SFP+ Modules
- Up to 100 mW Power Consumption Reduction by Enabling the Use of Unmatched FP/DFB TOSAs
- Supports SFF-8431 SFP+ MSA and SFF-8472 Digital Diagnostic
- 225mW Power Dissipation at 3.3V (IMOD $=40 \mathrm{~mA}$, IBIAS $=60 \mathrm{~mA}$ Assuming 25Ω TOSA)
- Single +3.3V Power Supply
- Up to 11.3Gbps (NRZ) Operation
- Programmable Modulation Current from 10mA to 100 mA (5Ω Load)
- Programmable Bias Current from 5mA to 80mA
- Programmable Input Equalization
- Programmable Output Deemphasis
- 25Ω Output Back Termination at TOUT+ and TOUT-
- DJ Performance 7psp-p with Mismatched Differential Load (5 5)
- DJ Performance 5psp-P with Mismatched Differential Load (25ת)
- DJ Performance 5psp-p with 50Ω Differential Load
- Programmable Pulse Width
- Edge Transition Times of 22ps
- Bias Current Monitor
- Integrated Eye Safety Features
- 3-Wire Digital Interface
- $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ Operation

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3946ETG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 TQFN-EP*

Note: Parts are guaranteed by design and characterization to operate over the $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ ambient temperature range (TA) and are tested up to $+85^{\circ} \mathrm{C}$.
+Denotes a lead(Pb)-free/RoHS-compliant package.
${ }^{*} E P=$ Exposed pad.

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

ABSOLUTE MAXIMUM RATINGS

Vcc, Vcct, Vccd	4.0V
Current Into TOUT+ and TOUT-............................... + 100 mA	
Current Into TIN+ and TIN- -20mA to +20mA	
Voltage Range at TIN+, TIN-,	
DISABLE, SDA, SCL, CSEL, FAULT,	
BMAX, and BMON..	-0.3V to (Vcc + 0.3V)
Voltage Range at BIAS	-0.3V to Vcc
oltage Range at TOUT+ and TOUT-...	1.3V) to (VCC + 1.3V)

urrent into BIAS	A
Continuous Power Dissipation ($\mathrm{TA}^{\text {a }}+70^{\circ} \mathrm{C}$)	
TQFN (derate $27.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..	.2222mW
Storage Temperature Range	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Die Attach Temperature	.. $+400^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

```
TQFN
    Junction-to-Ambient Thermal Resistance (0JA) .......... 36
    Junction-to-Case Thermal Resistance (0JC)................ 3}\mp@subsup{3}{}{\circ}\textrm{C}/\textrm{W
```

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+2.85 \mathrm{~V}\right.$ to $+3.63 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and Figure 1. Guaranteed by design and characterization from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=+3.3 \mathrm{~V}$, $\mathrm{IBIAS}=60 \mathrm{~mA}, \mathrm{IMOD}=40 \mathrm{~mA}, 25 \Omega$ differential output load, and $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Power-Supply Current	ICC	Excludes output current through the external pullup inductors (Note 3)		68	90	mA
Power-Supply Voltage	VCC		2.85		3.63	V
Power-Supply Noise		DC to 10 MHz			100	mVP-P
		10 MHz to 20 MHz			10	
POWER-ON RESET						
Vcc for Enable High				2.55	2.75	V
VCC for Enable Low			2.3	2.45		V
DATA INPUT SPECIFICATION						
Input Data Rate			1	10	11.3	Gbps
Differential Input Voltage	VIN	TXEQ_EN = high, launch amplitude into FR4 transmission line ≤ 5.5 in	0.19		0.7	VP-P
		TXEQ_EN = low	0.15		1.0	
Differential Input Resistance	RIN		75	100	125	Ω
Differential Input Return Loss	SDD11	Part powered on, $\mathrm{f} \leq 10 \mathrm{GHz}$		12		dB
Common-Mode Input Return Loss	SCC11	Part powered on, $1 \mathrm{GHz} \leq \mathrm{f} \leq 10 \mathrm{GHz}$		10		dB
BIAS GENERATOR						
Maximum Bias Current	IBIASMAX	Current into BIAS pin, DISABLE = low, and TX_EN = high	80			mA

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.85 \mathrm{~V}\right.$ to $+3.63 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and Figure 1. Guaranteed by design and characterization from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, $\mathrm{I} \mathrm{BIAS}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{MOD}}=40 \mathrm{~mA}, 25 \Omega$ differential output load, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Bias Current	IBIASmin	Current into BIAS pin, DISABLE = low, and TX_EN = high			5	mA
Bias-Off Current	IBIAS-OFF	Current into BIAS pin, DISABLE $=$ high or TX_EN = low or SET_IBIAS[8:0] = H0x00; BIAS pin voltage at VCC			100	$\mu \mathrm{A}$
Bias Current DAC Stability		$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I} \mathrm{BIAS} \leq 80 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BI}} \mathrm{AS}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V} \\ & (\text { Notes 2, 4) } \end{aligned}$		1	3	\%
Instantaneous Compliance Voltage at BIAS	VBIAS		0.9	1.5	2.1	V
BMON Current Gain	GBmon	GBMON $=\operatorname{IBMON} / \mathrm{IBIAS}$, external resistor to ground defines voltage	9	10	11	mA/A
Compliance Voltage at BMON			0		1.8	V
BMON Current Gain Stability		$5 \mathrm{~mA} \leq \mathrm{IBIAS} \leq 80 \mathrm{~mA}$ (Notes 2, 4)		1.2	4	\%
LASER MODULATOR						
TOUT+ and TOUTInstantaneous Output Compliance Voltage			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.0 \end{gathered}$		$\begin{gathered} V_{C C}+ \\ 1.0 \end{gathered}$	V
Maximum Modulation Current	ImODMAX	Current into external 25Ω differential termination, output common-mode voltage $=\mathrm{V}_{\mathrm{CC}}$	80			mAp-P
		Current into external 50Ω differential termination, output common-mode voltage $=$ VCC	60			
Minimum Modulation Current	IMODMIN				10	mAP-P
Differential Output Resistance	$2 \times$ ROUT			50		Ω
Modulation-Off Maximum Current	IMOD-OFF	Current between TOUT+ and TOUT- when DISABLE = high or TX_EN = low or SET_IMOD[8:0] = H0x00			100	$\mu \mathrm{A}$
Modulation Current DAC Stability		$10 \mathrm{~mA} \leq 1 \mathrm{MOD} \leq 80 \mathrm{~mA}$ (Notes 2, 4)		1.5	3	\%
Modulation Current Edge Speed (Note 2)	tr, tF	20% to $80 \%, 20 \mathrm{~mA} \leq 1 \mathrm{MOD} \leq 80 \mathrm{~mA}$		22	30	ps
		$\begin{aligned} & 20 \% \text { to } 80 \%, 10 \mathrm{~mA} \leq 1 \mathrm{MOD} \leq 80 \mathrm{~mA}, \\ & \text { TXDE_MD[1:0] }=3 \mathrm{~d} \end{aligned}$		22	30	
Deterministic Jitter (Notes 2, 5)	DJ	$10 \mathrm{~mA} \leq \mathrm{IMOD} \leq 60 \mathrm{~mA}$, 11.3 Gbps , output differential load $=50 \Omega$		5	12	psp-P
		$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{MOD}} \leq 80 \mathrm{~mA}$, 11.3 Gbps , output differential load $=25 \Omega$		5	12	
		$10 \mathrm{~mA} \leq \mathrm{IMOD} \leq 80 \mathrm{~mA}$, 11.3 Gbps , output differential load $=5 \Omega$		7		
		$10 \mathrm{~mA} \leq \mathrm{IMOD} \leq 60 \mathrm{~mA}, 10.7 \mathrm{Gbps}$, output differential load $=50 \Omega$ (K28.5 pattern)		5	10.5	

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+2.85 \mathrm{~V}\right.$ to $+3.63 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and Figure 1. Guaranteed by design and characterization from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{BIAS}}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{MOD}}=40 \mathrm{~mA}, 25 \Omega$ differential output load, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Random Jitter	RJ	$10 \mathrm{~mA} \leq \mathrm{IMOD} \leq 80 \mathrm{~mA}$, output differential load $=25 \Omega$ (Note 2)		0.19	0.55	pSRMS
Differential Output Return Loss	SDD22	Part powered on, $\mathrm{f} \leq 5 \mathrm{GHz}$		8		dB
		Part powered on, $\mathrm{f} \leq 10 \mathrm{GHz}$		6		
SAFETY FEATURES						
Threshold Voltage at BMAX	VBMAX	FAULT always occurs for $V_{B M A X} \geq 1.3 \mathrm{~V}$, FAULT never occurs for VBMAX $<1.1 \mathrm{~V}$ (Note 2, Figure 1)	1.1	1.2	1.3	V
Threshold Voltage at BIAS	$V_{\text {BIAS }}$	FAULT never occurs for $V_{\text {BIAS }} \geq 0.57 \mathrm{~V}$, FAULT always occurs for VBIAS $<0.44 \mathrm{~V}$	0.44	0.48	0.57	V
Threshold Voltage at BMON	VBMON	Warning always occurs for $V_{B M O N} \geq$ VCC - 0.5V, warning never occurs for $V_{B M O N}<V_{C C}-0.7 V$	$\begin{gathered} \text { VCC - } \\ 0.7 \end{gathered}$	$\begin{gathered} \text { VCC - } \\ 0.6 \end{gathered}$	$\begin{gathered} \text { VCC - } \\ 0.5 \end{gathered}$	V
SFP TIMING REQUIREMENTS						
DISABLE Assert Time	t_OFF	Time from rising edge of DISABLE input signal to IBIAS < IBIAS-OFF and IMOD < IMOD-OFF		0.05	1	$\mu \mathrm{s}$
DISABLE Negate Time	t_ON	Time from falling edge of DISABLE to IBIAS and IMOD at 90% of steady state		0.5	5	$\mu \mathrm{s}$
FAULT Reset Time of Power-On Time	t_INIT	Time from power-on or negation of FAULT using DISABLE		50	200	$\mu \mathrm{s}$
FAULT Reset Time	t_FAULT	Time from fault to FAULT on, CFAULT \leq 20 pF , RFAULT $=4.7 \mathrm{k} \Omega$		0.5	2	$\mu \mathrm{s}$
DISABLE to Reset		Time DISABLE must be held high to reset FAULT	0.5			$\mu \mathrm{S}$
BIAS CURRENT DAC						
Full-Scale Current	IBIAS-FS	SET_IBIAS[8:1] = HxFF	80	100		mA
LSB Size				190		$\mu \mathrm{A}$
Integral Nonlinearity	INL	$5 \mathrm{~mA} \leq 1 \mathrm{BIAS} \leq 80 \mathrm{~mA}$		± 0.5		\%FS
Differential Nonlinearity	DNL	$5 \mathrm{~mA} \leq \mathrm{I} \mathrm{BIAS} \leq 80 \mathrm{~mA}$, guaranteed monotonic at 8-bit resolution SET_IBIAS[8:1]		± 0.5		LSB
MODULATION CURRENT DAC (25 DIFFERENTIAL LOAD)						
Full-Scale Current	IMOD-FS	SET_IMOD[8:1] = HxFF	80	105		mA
LSB Size				200		$\mu \mathrm{A}$
Integral Nonlinearity	INL	$10 \mathrm{~mA} \leq 1 \mathrm{MOD} \leq 80 \mathrm{~mA}$		± 1		\%FS
Differential Nonlinearity	DNL	$10 \mathrm{~mA} \leq \mathrm{IMOD} \leq 80 \mathrm{~mA}$, guaranteed monotonic at 9-bit resolution SET_IMOD[8:0]		± 0.5		LSB

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.85 \mathrm{~V}\right.$ to $+3.63 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and Figure 1. Guaranteed by design and characterization from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, $\mathrm{I} \mathrm{BIAS}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{MOD}}=40 \mathrm{~mA}, 25 \Omega$ differential output load, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONTROL I/O SPECIFICATIONS						
DISABLE Input Current	IIH				12	$\mu \mathrm{A}$
	IIL	Depends on pullup resistance		500	800	
DISABLE Input High Voltage	V_{IH}		1.8		VCC	V
DISABLE Input Low Voltage	VIL		0		0.8	V
DISABLE Input Resistance	RPULL	Internal pullup resistor	4.7	7.5	10	k Ω
3-WIRE DIGITAL I/O SPECIFICATIONS (SDA, SCL, CSEL)						
Input High Voltage	$\mathrm{VIH}^{\text {I }}$		2.0		Vcc	V
Input Low Voltage	VIL				0.8	V
Input Hysteresis	VHYST			80		mV
Input Leakage Current	IIL, IIH	VIN $=0 \mathrm{~V}$ or VCC , internal pullup or pulldown is $75 \mathrm{k} \Omega$ typical			150	$\mu \mathrm{A}$
Output High Voltage	VOH	External pullup is ($4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$) to VCC	VCC - 0.5			V
Output Low Voltage	VOL	External pullup is ($4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$) to VCC			0.4	V
3-WIRE DIGITAL INTERFACE TIMING CHARACTERISTICS (Figure 5)						
SCL Clock Frequency	fSCL			400	1000	kHz
SCL Pulse-Width High	tch		0.5			$\mu \mathrm{s}$
SCL Pulse-Width Low	tCL		0.5			$\mu \mathrm{s}$
SDA Setup Time	tDS			100		ns
SDA Hold Time	tDH			100		ns
SCL Rise to SDA Propagation Time	tD			5		ns
CSEL Pulse-Width Low	tcsw		500			ns
CSEL Leading Time Before the First SCL Edge	tL			500		ns
CSEL Trailing Time After the Last SCL Edge	t \dagger			500		ns
SDA, SCL Load	CB	Total bus capacitance on one line with $4.7 \mathrm{k} \Omega$ pullup to VCC			20	pF

Note 2: Guaranteed by design and characterization ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$).
Note 3: BIAS is connected to 2.0 V . TOUT+/TOUT- are connected through pullup inductors to a separate supply that is equal to $\mathrm{V}_{\text {CCT }}$.
Note 4: Stability is defined as [(I_measured) - (I_reference)]/(I_reference) over the listed current range, temperature, and VCC = $\mathrm{V}_{\text {cCREF }} \pm 5 \%$. VCCREF $=3.0 \mathrm{~V}$ to 3.45 V . Reference current measured at V CCREF, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 5: Measured with K28.5 data pattern at 10.7Gbps and with a ($2^{7}-1$ PRBS +72 zeros $+2^{7}-1$ PRBS (inverted) +72 ones) pattern at 11.3Gbps.

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Figure 1. AC Test Setup

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

 Typical Operating Characteristics$\overline{(V C C}=+3.3 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, data pattern $=2^{7}-1$ PRBS +72 zeros $+2^{7}-1$ PRBS (inverted) +72 ones, unless otherwise noted.)

10.3Gbps ELECTRICAL EYE DIAGRAM

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, data pattern $=2^{7}-1 \mathrm{PRBS}+72$ zeros $+2^{7}-1$ PRBS (inverted) +72 ones, unless otherwise noted.)

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Typical Operating Characteristics (continued)

$\left(\mathrm{V} C \mathrm{C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, data pattern $=2^{7}-1$
PRBS +72 zeros $+2^{7}-1$ PRBS (inverted) +72 ones, unless otherwise noted.)

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

*EXPOSED PAD CONNECTED TO GROUND.

Pin Description

PIN	NAME	FUNCTION
1, 15	VCCD	Power Supply. Provides supply voltage to the digital block.
2	DISABLE	Disable Input, CMOS. Set to logic-low for normal operation. Logic-high or open disables both the modulation current and the bias current. Internally pulled up by a $7.5 \mathrm{k} \Omega$ resistor to VCCD.
3	FAULT	Fault Output, Open Drain. Logic-high indicates a fault condition. FAULT remains high even after the fault condition has been removed. A logic-low occurs when the fault condition has been removed and the fault latch has been cleared by toggling the DISABLE pin. FAULT should be pulled up to VCC by a $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ resistor.
4	BMAX	Analog Laser Bias-Current Limit. A resistive voltage-divider connected among BMON, BMAX, and ground sets the maximum allowed laser bias current limit. The voltage at BMAX is internally compared to 1.2 V bandgap reference voltage.
5	BMON	Bias Current-Monitor Output. Current out of this pin develops a ground-referenced voltage across external resistor(s) that is proportional to the laser bias current. The current sourced by this pin is typically 1/100th the BIAS pin current.
6, 7, 12, 13	VCCT	Power Supply. Provides supply voltage to the output block.
8, 9	TOUT-	Inverted Modulation Current Output. Internally pulled up by a 25Ω resistor to VCCT.
10, 11	TOUT+	Noninverted Modulation Current Output. Internally pulled up by a 25Ω resistor to $\mathrm{V}_{\text {CCT }}$.
14	BIAS	Laser Bias Current Connection. This pin requires a $0.1 \mu \mathrm{~F}$ capacitor to VEET for proper operation.
16	CSEL	Chip-Select Input, CMOS. Setting CSEL to logic-high starts a cycle. Setting CSEL to logic-low ends the cycle and resets the control state machine. Internally pulled down by a $75 \mathrm{k} \Omega$ resistor to VEET.
17	SDA	Serial-Data Bidirectional Input, CMOS. Open-drain output. This pin has a $75 \mathrm{k} \Omega$ internal pullup, but it requires an external $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ pullup resistor. (Data line-collision protection is implemented.)

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Pin Description (continued)

PIN	NAME	FUNCTION
18	SCL	Serial-Clock Input, CMOS. This pin has a $75 \mathrm{k} \Omega$ internal pulldown.
19,24	VEET	Ground
20,23	VCC	Power-Supply Connections. Provides supply voltage to the core circuitry.
21	TIN+	Noninverted Data Input
22	TIN-	Inverted Data Input
-	EP	Exposed Pad. Ground. Must be soldered to circuit board ground for proper thermal and electrical performance (see the Exposed-Pad Package and Thermal Considerations section).

Figure 2. Functional Diagram

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Detailed Description

The MAX3946 SFP+ laser driver is designed to drive 5Ω to 50Ω TOSAs from 1 Gbps to 11.3 Gbps . The device contains an input buffer with programmable equalization, pulse-width adjustment, bias current and modulation current DACs, output driver with programmable deemphasis, power-on reset circuitry, bias monitor, laser current limiter, and eye-safety circuitry. A 3 -wire digital interface is used to control the transmitter functions. The registers that control the device's functionality are TXCTRL, SET_IMOD, SET_IBIAS, IMODMAX, IBIASMAX, MODINC, BIASINC, SET_TXEQ, SET_PWCTRL, and SET_TXDE.

Input Buffer with Programmable
 Equalization

The input is internally biased and terminated with 50Ω to a common-mode voltage. The first amplifier stage features a programmable equalizer for high-frequency losses including SFP connector. Equalization is controlled by the SET_TXEQ register and TXEQ_EN bit, TXCTRL[3] (Table 1). The TX_POL bit in the TXCTRL register controls the polarity of TOUT+ and TOUT- vs. TIN+ and TIN-. The SET_PWCTRL register controls the output eye crossing (Table 5). A status indicator bit (TXED) monitors the presence of an AC input signal.

Bias Current DAC

The device's bias current is optimized to provide up to 80 mA of bias current into a 5Ω to 50Ω laser load with $200 \mu \mathrm{~A}$ resolution. The bias current is controlled through the 3 -wire digital interface using the SET_IBIAS, IBIASMAX, and BIASINC registers.
For laser operation, the laser bias current can be set using the 9 -bit SET_IBIAS DAC. The upper 8 bits are set by the SET_IBIAS[8:1] register, commonly used during
the initialization procedure after POR. The LSB (bit 0) of SET_IBIAS is initialized to zero after POR and can be updated using the BIASINC register. The IBIASMAX register should be programmed to a desired maximum bias current value (up to 96 mA) to protect the laser. The IBIASMAX register limits the maximum SET_IBIAS[8:1] DAC code.
After initialization the value of the SET_IBIAS DAC register should be updated using the BIASINC register to optimize cycle time and enhance laser safety. The BIASINC register is an 8 -bit register where the first 5 bits contain the increment information in two's complement notation. Increment values range from -16 to +15 LSBs. If the updated value of SET_IBIAS[8:1] exceeds IBIASMAX[7:0], the IBIASERR warning flag is set and SET_IBIAS[8:0] remains unchanged.

Modulation Current DAC

The modulation current from the device is optimized to provide up to 80 mA of modulation current into a 5Ω to 25Ω differential laser load (60 mA for 50Ω laser load) with $300 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ resolution. The modulation current is controlled through the 3 -wire digital interface using the SET_IMOD, IMODMAX, MODINC, and SET_TXDE registers.
For laser operation, the laser modulation current can be set using the 9-bit SET_IMOD DAC. The upper 8 bits are set by the SET_IMOD[8:1] register, commonly used during the initialization procedure after POR. The LSB (bit 0) of SET_IMOD is initialized to zero after POR and can be updated using the MODINC register. The IMODMAX register should be programmed to a desired maximum modulation current value (up to 96 mA) to protect the laser. The IMODMAX register limits the maximum SET_IMOD[8:1] DAC code.

Table 1. Input Equalization Control Register Settings

TXCTRL[3]	SET_TXEQ[2:1]			DESCRIPTION
TXEQ_EN				
0	X	X	150mVP-P to 1000mVP-P differential input amplitude (default setting)	
1	0	0	Optimized for 1in to 4in FR4, 190mVP-P to 450mVP-P differential launch amplitude from source	
1	0	1	Optimized for 4in to 6in FR4, 190mVP-P to 450mVP-P differential launch amplitude from source	
1	1	0	Optimized for 1in to 4in FR4, 450mVP-P to 700mVP-P differential launch amplitude from source	
1	1	1	Optimized for 4in to 6in FR4, 450mVP-P to 700mVP-P differential launch amplitude from source	

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Figure 3. BMON and BMAX Circuitry

After initialization the value of the SET_IMOD DAC register should be updated using the MODINC register to optimize cycle time and enhance laser safety. The MODINC register is an 8-bit register where the first 5 bits contain the increment information in two's complement notation. Increment values range from -16 to +15 LSBs. If the updated value of SET_IMOD[8:1] exceeds IMODMAX[7:0], the IMODERR warning flag is set and SET_IMOD[8:0] remains unchanged.
Modulation current sent to the laser is actually the combination of the current generated by the SET_IMOD register and current subtracted from this by the SET_TXDE register.

Output Driver

The output driver is optimized for a 5Ω to 50Ω differential load. The output stage also features programmable deemphasis that can be set as a percentage of the modulation current. The deemphasis function is controlled by the TXDE_MD[1] and TXDE_MD[0] bits (TXCTRL[5:4]) and SET_TXDE[5:0].

Power-On Reset (POR)

POR ensures that the laser is off until supply voltage has reached a specified threshold (2.75V). After POR, bias current and modulation current ramps are controlled to avoid overshoot. In the case of a POR, all registers are reset to their default values.

BMON and BMAX Functions

Current out of the BMON pin is typically 1/100th the value of the current at the BIAS pin. The total resistance to ground at BMON sets the voltage gain. An internal comparator at the BMAX pin latches a fault if the voltage on BMAX exceeds the value of 1.2 V . The BMAX voltagesense pin is connected by means of a voltage-divider to the BMON pin and ground. The full-scale range of the BMON voltage is $1.2 \mathrm{~V} \times(\mathrm{R} 1 / \mathrm{R} 2+1)$ (Figure 3). The analog bias-current limit is determined by (1.2V/R2) x 100 .

Eye Safety and Output Control Circuitry
The safety and output control circuitry includes the disable pin (DISABLE) and disable bit (TX_EN), along with a fault indicator and fault detectors (Figure 4). The device has two types of faults, HARD FAULT and SOFT FAULT. A HARD FAULT triggers the FAULT pin, and the output to the laser is disabled. A SOFT FAULT operates as a warning, and the outputs are not disabled. Both types of faults are stored in the TXSTAT1 and TXSTAT2 registers.
The FAULT pin is a latched output that can be cleared by toggling the DISABLE pin. Toggling the DISABLE pin also clears the TXSTAT1 and TXSTAT2 registers. A sin-gle-point fault can be a short to VCC or ground. Table 2 shows the circuit response to various single-point faults.

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Figure 4. Eye Safety Circuitry

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Table 2. Circuit Response to Single-Point Faults

PIN	NAME	SHORT TO Vcc	SHORT TO GROUND	OPEN
1	VCCD	Normal	Disabled-HARD FAULT	Normal (Note 3)—Redundant path
2	DISABLE	Disabled	Normal (Note 1). Can only be disabled by other means.	Disabled
3	FAULT	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
4	BMAX	Disabled—HARD FAULT	Normal (Note 1)	Disabled-HARD FAULT
5	BMON	Disabled—HARD FAULT	Normal (Note 1)	Disabled-HARD FAULT
6	VCCT	Normal	Disabled-Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
7	VCCT	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
8	TOUT-	IMOD is reduced	Disabled-HARD FAULT	IMOD is reduced
9	TOUT-	IMOD is reduced	Disabled-HARD FAULT	IMOD is reduced
10	TOUT+	IMOD is reduced	Disabled-HARD FAULT	IMOD is reduced
11	TOUT+	IMOD is reduced	Disabled-HARD FAULT	IMOD is reduced
12	VCCT	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
13	VCCT	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
14	BIAS	IBIAS is on-No fault	Disabled-HARD FAULT	Disabled-HARD FAULT
15	VCCD	Normal	Disabled-Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
16	CSEL	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
17	SDA	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
18	SCL	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
19	Veet	Disabled-Fault (external supply shorted) (Note 2)	Normal	Normal (Note 3)—Redundant path
20	Vcc	Normal	Disabled—HARD FAULT (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
21	TIN+	SOFT FAULT	SOFT FAULT	Normal (Note 1)
22	TIN-	SOFT FAULT	SOFT FAULT	Normal (Note 1)
23	Vcc	Normal	Disabled—HARD FAULT (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
24	Veet	Disabled-Fault (external supply shorted) (Note 2)	Normal	Normal (Note 3)—Redundant path

Note 1: Normal—Does not affect laser power.
Note 2: Supply-shorted current is assumed to be primarily on the circuit board (outside this device), and the main supply is collapsed by the short.
Note 3: Normal in functionality, but performance could be affected.
Warning: Shorted to Vcc or shorted to ground on some pins can violate the Absolute Maximum Ratings.

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

3-Wire Interface

The device implements a proprietary 3 -wire digital interface. An external controller generates the clock. The 3 -wire interface consists of an SDA bidirectional data line, an SCL clock signal input, and a CSEL chip-select input (active high). The external master initiates a data transfer by asserting the CSEL pin. The master starts to generate a clock signal after the CSEL pin has been set to a logic-high. All data transfers are most significant bit (MSB) first.

Protocol

Each operation consists of 16 -bit transfers (15-bit address/data, 1 -bit RWN). The bus master generates 16 clock cycles to SCL. All operations transfer 8 bits to the device. The RWN bit determines if the cycle is read or write. See Table 3.

Register Addresses

The device contains 13 registers available for programming. Table 4 shows the registers and addresses.

Write Mode $(R W N=0)$
The master generates 16 total clock cycles at SCL. The master outputs a total of 16 bits (MSB first) to the SDA line at the falling edge of the clock. The master closes the transmission by setting CSEL to 0 . Figure 5 shows the interface timing.

Read Mode (RWN = 1)
The master generates 16 total clock cycles at SCL. The master outputs a total of 8 bits (MSB first) to the SDA line at the falling edge of the clock. The SDA line is released after the RWN bit has been transmitted. The slave outputs 8 bits of data (MSB first) at the rising edge of the clock. The master closes the transmission by setting CSEL to 0 . Figure 5 shows the interface timing.

Mode Control

 Normal mode allows read-only instruction for all registers except MODINC and BIASINC. The MODINC and BIASINC registers can be updated during normal mode. Doing so speeds up the laser control update through the 3 -wire interface by a factor of two. The normal mode is the default mode.Setup mode allows the master to write unrestricted data into any register except the status (TXSTAT1, TXSTAT2) registers. To enter the setup mode, the MODECTRL register (address $=$ H0xOE) must be set to H0x12. After the MODECTRL register has been set to H0x12, the next operation is unrestricted. The setup mode is automatically exited after the next operation is finished. This sequence must be repeated if further unrestricted settings are necessary.

Table 3. Digital Communication Word Structure

BIT															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Register Address							RWN	Data that is written or read							

Table 4. Register Descriptions and Addresses

ADDRESS	NAME	
H0x05	TXCTRL	Transmitter Control Register
H0x06	TXSTAT1	Transmitter Status Register 1
H0x07	TXSTAT2	Transmitter Status Register 2
H0x08	SET_IBIAS	Bias Current Setting Register
H0x09	SET_IMOD	Modulation Current Setting Register
H0x0A	IMODMAX	Maximum Modulation Current Setting Register
H0x0B	IBIASMAX	Maximum Bias Current Setting Register
H0x0C	MODINC	Modulation Current Increment Setting Register
H0x0D	BIASINC	Bias Current Increment Setting Register
H0x0E	MODECTRL	Mode Control Register
H0x0F	SET_PWCTRL	Pulse-Width Control Register
H0x10	SET_TXDE	Deemphasis Control Register
H0x11	SET_TXEQ	Equalization Control Register

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Figure 5. Timing for 3-Wire Digital Interface

Transmitter Control Register (TXCTRL)
Bit \#
Name
Default Value

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	ADDRESS
X	X	TXDE_MD[1]	TXDE_MD[0]	TXEQ_EN	SOFTRES	TX_POL	TX_EN	H0x05
X	X	0	0	0	0	1	1	

Bits 5 and 4: TXDE_MD[1:0]. Controls the mode of the transmit output deemphasis circuitry.
$00=$ deemphasis is fixed at 6.25% of the modulation amplitude
01 = deemphasis is fixed at 3.125% of the modulation amplitude
$10=$ deemphasis is programmed by the SET_TXDE register setting
11 = deemphasis is at its maximum of approximately 9%
Bit 3: TXEQ_EN. Enables or disables the input equalization circuitry.
$0=$ disabled
1 = enabled
Bit 2: SOFTRES. Resets all registers to their default values (the DISABLE pin must be at a logic 1 during a write to SOFTRES for the registers to be set to their default values).
0 = normal
1 = reset
Bit 1: TX_POL. Controls the polarity of the signal path.
0 = inverse
1 = normal
Bit 0: TX_EN. Enables or disables the output circuitry.
0 = disabled
1 = enabled

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Transmitter Status Register 1 (TXSTAT1)
Bit \#
Name
Default Value

$\mathbf{7}$ (STICKY)	$\mathbf{6}$ (STICKY)	$\mathbf{5}$ (STICKY)	$\mathbf{4}$ (STICKY)	$\mathbf{3}$ (STICKY)	$\mathbf{2}$ (STICKY)	$\mathbf{1}$ (STICKY)	$\mathbf{0}$ (STICKY)	ADDRESS
FST[7]	FST[6]	X	FST[4]	FST $[3]$	FST[2]	FST[1]	TX_FAULT	H0x06
X								

Bit 7: FST[7]. When the VCCT supply voltage is below 2.3V, the POR circuitry reports a fault. Once the VCCT supply voltage is above 2.75 V , the POR resets all registers to their default values and the fault is cleared.
Bit 6: FST[6]. When the voltage at BMON is above VCC - 0.5 V , a SOFT FAULT is reported.
Bit 4: FST[4]. When the voltage at BMAX goes above 1.3V, a HARD FAULT is reported.
Bit 3: FST[3]. When the common-mode voltage at $\mathrm{V}_{T O U T}$ g goes below $\mathrm{V}_{C C}-1.3 \mathrm{~V}$, a SOFT FAULT is reported.
Bit 2: FST[2]. When the voltage at $\mathrm{VTOUT}_{ \pm}$goes below $\mathrm{VCC}-0.8 \mathrm{~V}$, a HARD FAULT is reported.
Bit 1: FST[1]. When the BIAS voltage goes below 0.44 V , a HARD FAULT is reported.
Bit 0: TX_FAULT. Copy of a FAULT signal in FST[7:6] and FST[4:1]. A POR resets the FST bits to 0.
Transmitter Status Register 2 (TXSTAT2)

Bit \#	7	6	5	4	3 (STICKY)	$\begin{gathered} 2 \\ \text { (STICKY) } \end{gathered}$	$\begin{gathered} 1 \\ \text { (STICKY) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (STICKY) } \end{gathered}$	ADDRESS
Name	X	X	X	X	IMODERR	IBIASERR	TXED	X	H0x07
Default Value	X	X	X	X	X	X	X	X	

Bit 3: IMODERR. Any attempt to modify SET_IMOD[8:1] above IMODMAX[7:0] flags a warning at IMODERR. (See the Programming Modulation Current section.)
Bit 2: IBIASERR. Any attempt to modify SET_IBIAS[8:1] above IBIASMAX[7:0] flags a warning at IBIASERR. (See the Programming Bias Current section.)
Bit 1: TXED. This indicates the absence of an AC signal at the transmit input.
Bias Current Setting Register (SET_IBIAS)

Bit \#	7	6	5	4	3	2	1	0	ADDRESS
Name	SET_IBIAS [8] (MSB)	$\begin{gathered} \text { SET_IBIAS } \\ {[7]} \end{gathered}$	SET_IBIAS [6]	SET_IBIAS [5]	SET_IBIAS [4]	SET_IBIAS [3]	$\begin{gathered} \text { SET_IBIAS } \\ {[2]} \end{gathered}$	$\begin{gathered} \text { SET_IBIAS } \\ {[1]} \end{gathered}$	H0x08
Default Value	0	0	0	0	0	0	0	1	

Bits 7 to 0: SET_IBIAS[8:1]. The bias current DAC is controlled by a total of 9 bits. The SET_IBIAS[8:1] bits are used to set the bias current with even denominations from 0 to 510 bits. The LSB (SET_IBIAS[0]) is controlled by the BIASINC register and is used to set the odd denominations in the SET_IBIAS[8:0]. Any direct write to SET_IBIAS[8:1] resets the LSB.

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Bit \#
Name
Default Value

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	ADDRESS
SET_IMOD $[8](M S B)$	SET_IMOD $[7]$	SET_IMOD $[6]$	SET_IMOD $[5]$	SET_IMOD $[4]$	SET_IMOD $[3]$	SET_IMOD $[2]$	SET_IMOD $[1]$	H0x09
0	0	0	0	0	1	0	0	

Bits 7 to 0: SET_IMOD[8:1]. The modulation current DAC is controlled by a total of 9 bits. The SET_IMOD[8:1] bits are used to set the modulation current with even denominations from 0 to 510 bits. The LSB (SET_IMOD[0]) is controlled by the MODINC register and is used to set the odd denominations in the SET_IMOD[8:0]. Any direct write to SET_IMOD[8:1] resets the LSB.

Maximum Modulation Current Setting Register (IMODMAX)
Bit \#
Name
Default Value

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	ADDRESS
IMODMAX $[7](M S B)$	IMODMAX $[6]$	IMODMAX $[5]$	IMODMAX $[4]$	IMODMAX $[3]$	IMODMAX $[2]$	IMODMAX $[1]$	IMODMAX $[0](\mathrm{LSB})$	H0x0A
0	0	1	0	0	0	0	0	

Bits 7 to 0: IMODMAX[7:0]. The IMODMAX register is an 8-bit register that can be used to limit the maximum modulation current. IMODMAX[7:0] is continuously compared to SET_IMOD[8:1]. Any attempt to modify SET_IMOD[8:1] above IMODMAX[7:0] is ignored and flags a warning at IMODERR.

Maximum Bias Current Setting Register (IBIASMAX)

Bit \#	7	6	5	4	3	2	1	0	ADDRESS
Name	IBIASMAX [7] (MSB)	IBIASMAX [6]	IBIASMAX [5]	IBIASMAX [4]	IBIASMAX [3]	IBIASMAX [2]	IBIASMAX [1]	IBIASMAX [0] (LSB)	H0x0B
Default Value	0	0	1	0	0	0	0	0	

Bits 7 to 0: IBIASMAX[7:0]. The IBIASMAX register is an 8-bit register that can be used to limit the maximum bias current. IBIASMAX[7:0] is continuously compared to SET_IBIAS[8:1]. Any attempt to modify SET_IBIAS[8:1] above IBIASMAX[7:0] is ignored and flags a warning at IBIASERR.

Modulation Current Increment Setting Register (MODINC)

Bit \#	7	6	5	4	3	2	1	0	ADDRESS
Name	$\begin{array}{\|l} \hline \text { SET_IMOD } \\ \text { [0] (LSB) } \end{array}$	X	X	MODINC [4] (MSB)	MODINC [3]	MODINC [2]	MODINC [1]	MODINC [0] (LSB)	H0xOC
Default Value	0	0	0	0	0	0	0	0	

Bit 7: SET_IMOD[0]. This is the LSB of the SET_IMOD[8:0] bits. This bit can only be updated by the use of MODINC[4:0].
Bits 4 to 0: MODINC[4:0]. This string of bits is used to increment or decrement the modulation current. When written to, the SET_IMOD[8:0] bits are updated. MODINC[4:0] are a two's complement string.

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Bias Current Increment Setting Register (BIASINC)
Bit \#

Name

Default Value

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$
SET_IBIAS $[0]$ (LSB)	X	X	BIASINC $[4](M S B)$
0	0	0	0

$\mathbf{3}$
BIASINC
$[3]$

$\mathbf{2}$
BIASINC
$[2]$
0

$\mathbf{1}$	$\mathbf{0}$	\mathbf{A}	
	BIASINC $[1]$	BIASINC $[0](\mathrm{LSB})$	
	0	0	

ADDRESS
HOxOD

Bit 7: SET_IBIAS[0]. This is the LSB of the SET_IBIAS[8:0] bits. This bit can only be updated by the use of BIASINC[4:0].
Bits 4 to 0: BIASINC[4:0]. This string of bits is used to increment or decrement the bias current. When written to, the SET_IBIAS[8:0] bits are updated. BIASINC[4:0] are a two's complement string.

Mode Control Register (MODECTRL)

Bit \#	7	6	5	4	3	2	1	0	ADDRESS
Name	MODECTRL [7] (MSB)	MODECTRL [6]	MODECTRL [5]	MODECTRL [4]	MODECTRL [3]	MODECTRL [2]	MODECTRL [1]	MODECTRL [0] (LSB)	H0x0E
Default Value	0	0	0	0	0	0	0	0	

Bits 7 to 0: MODECTRL[7:0]. The MODECTRL register enables the user to switch between normal and setup modes. The setup mode is achieved by setting this register to H0x12. MODECTRL must be updated before each write operation. Exceptions are MODINC and BIASINC, which can be updated in normal mode.

Pulse-Width Control Register (SET_PWCTRL)									
Bit \#	7	6	5	4	3	2	1	0	ADDRESS
Name	X	X	X	X	SET_PWCTRL [3] (MSB)	SET_PWCTRL [2]	SET_PWCTRL [1]	SET_PWCTRL [0] (LSB)	H0x0F
Default Value	X	X	X	X	0	0	0	0	

Bits 3 to 0: SET_PWCTRL[3:0]. This is a 4-bit register used to control the eye crossing by adjusting the pulse width.
Deemphasis Control Register (SET_TXDE)

Bit \#	7	6	5	4	3	2	1	0	ADDRESS
Name	X	X	SET_TXDE [5] (MSB)	SET_TXDE [4]	SET_TXDE [3]	SET_TXDE [2]	SET_TXDE [1]	SET_TXDE [0] (LSB)	H0x10
Default Value	X	X	0	0	0	0	0	1	

Bits 5 to 0: SET_TXDE[5:0]. This is a 6-bit register used to control the amount of deemphasis on the transmitter output. When calculating the total modulation current, the amount of deemphasis must be taken into account. The deemphasis is set as a percentage of modulation current.

Equalization Control Register (SET_TXEQ)

Bit \#	7	6	5	4	3	2	1	0	ADDRESS
Name	X	X	X	X	X	SET_TXEQ [2]	SET_TXEQ [1]	X	H0x11
Default Value	X	X	X	X	X	0	0	X	

Bits 2 to 1: SET_TXEQ[2:1]. These 2 bits are used to control the amount of equalization on the transmitter input. See Table 1 for more information.

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Design Procedure

Programming Bias Current

1) $\operatorname{IBIASMAX}[7: 0]=$ Maximum_Bias_Current_Value
2) SET_IBIASi[8:1] = Initial_Bias_Current_Value

Note: The total bias current is calculated using the SET_IBIAS[8:0] DAC value. SET_IBIAS[8:1] are the bits that can be manually written. SET_IBIAS[0] can only be updated using the BIASINC register.
When implementing an APC loop it is recommended to use the BIASINC register, which guarantees the fastest bias current update.
3) $\operatorname{BIASINCi}[4: 0]=$ New_Increment_Value
4) If (SET_IBIASi[8:1] \leq IBIASMAX[7:0]), then (SET_ IBIASi[8:0] = SET_IBIASi-1[8:0] + BIASINCi[4:0])
5) Else (SET_IBIASi[8:0] = SET_IBIASi-1[8:0])

The total bias current can be calculated as follows:
6) $\operatorname{IBIAS}=\left[S E T _I B I A S i[8: 0]+16\right] \times 200 \mu \mathrm{~A}$

Programming Modulation Current

1) $\operatorname{IMODMAX}[7: 0]=$ Maximum_Modulation_Current_Value
2) SET_IMOD $[8: 1]=$ Initial_Modulation_Current_Value $\times 1.06$
Note: The total modulation laser current is calculated using the SET_IMOD[8:0] DAC value and the SET_TXDE register value. SET_IMOD[8:1] are the bits that can be manually written. SET_IMOD[0] can only be updated using the MODINC register.
When implementing modulation compensation, it is recommended to use the MODINC register, which guarantees the fastest modulation current update.
3) $\operatorname{MODINC}[[4: 0]=$ New_Increment_Value
4) If (SET_IMODi[8:1] $\leq \operatorname{IMODMAX[7:0]),~then~(SET_ ~}$ IMOD $i[8: 0]=$ SET_IMODi-1[8:0] + MODINCi[4:0])
5) Else (SET_IMODi[8:0] = SET_IMODi-1[8:0])

The following equations give the modulation current (peak-to-peak) seen at the laser when driven differentially. REXtD is the differential load impedance of the laser plus any added series resistance.
6a) TXDE_MD[1:0] $=00$, then

$$
\mathrm{I}_{\mathrm{MOD}}=\left[\begin{array}{l}
0.3 \mathrm{~mA}\left(\mathrm{SET}_{-} \mathrm{MOD}[8: 0]+16\right) \\
\left.-0.15 \mathrm{~mA}\left(\text { SET_IMOD }^{2}: 3\right]+2\right)
\end{array}\right] \times \frac{50 \Omega}{50 \Omega+\mathrm{R}_{\mathrm{LD}}}
$$

6b) TXDE_MD[1:0] $=01$, then

$$
\mathrm{I}_{\mathrm{MOD}}=\left[\begin{array}{l}
0.3 \mathrm{~mA}\left(\text { SET_IMOD }^{2}[8: 0]+16\right) \\
\left.-0.15 \mathrm{~mA}\left(\text { SET_IMOD }^{2}: 4\right]+1\right)
\end{array}\right] \times \frac{50 \Omega}{50 \Omega+\mathrm{R}_{\mathrm{LD}}}
$$

6c) TXDE_MD[1:0] = 10, then set SET_TXDE[5:0] can be set to any value \geq SET_IMOD[8:4] and

$$
I_{M O D}=\left[\begin{array}{l}
0.3 \mathrm{~mA}\left(\mathrm{SET}_{-} \mathrm{IMOD}[8: 0]+16\right) \\
-0.15 \mathrm{~mA}\left(\text { SET_TXDE[5:0] }^{2}\right)
\end{array}\right] \times \frac{50 \Omega}{50 \Omega+\mathrm{R}_{\mathrm{LD}}}
$$

When SET_TXDE[5:0] is increased, the deemphasis current increases and the overall peak-to-peak modulation current decreases. This effect saturates when SET_TXDE[5:0] $=0.2 \times\left(S E T _I M O D[8: 0]+16\right)-1$, and further increases to SET_TXDE[5:0] do not increase the deemphasis current.
6d) TXDE_MD[1:0] = 11, then
$I_{M O D}=0.9 \times[0.3 \mathrm{~mA}($ SET_IMOD $[8: 0]+16)] \times \frac{50 \Omega}{50 \Omega+R_{\mathrm{LD}}}$
Note: When TXDE_MD[1:0] = 10 and the SET_TXDE register is set by the user, the minimum allowed deemphasis is 3% and the maximum is 10%. These limits are internally set by the MAX3946.

Programming Transmit Output Deemphasis

1) TXDE_MD[1:0] = Transmit_Deemphasis_Mode
2) SET _TXDE[5:0] = Transmit_Deemphasis_Value. If TXDE_MD[1:0] $=00$, 01, or 11, the value of SET_TXDE is automatically set by the device and there is no need to enter data to SET_TXDE.
For Transmit_Deemphasis_Mode:
$00=$ deemphasis is fixed at 6% of the modulation amplitude (the device controls the SET_TXDE value), default setting
01 = deemphasis is fixed at 3% of the modulation amplitude (the device controls the SET_TXDE value)
10 = deemphasis is programmed by the SET_TXDE register setting
11 = deemphasis is at its maximum of approximately 9% (the device controls the SET_TXDE value)

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Programming Pulse-Width Control
The eye crossing at the Tx output can be adjusted using the SET_PWCTRL register. Table 5 shows these settings. The sign of the number specifies the direction of

Table 5. Eye-Crossing Settings for SET_PWCTRL

SET_PWCTRL[3:0]	PWD	SET_PWCTRL[3:0]	PWD
1000	-7	0111	8
1001	-6	0110	7
1010	-5	0101	6
1011	-4	0100	5
1100	-3	0011	4
1101	-2	0010	3
1110	-1	0001	2
1111	0	0000	1

pulse-width distortion. The code of 1111 corresponds to a balanced state for differential output. The pulse-width distortion is bidirectional around the balanced state (see the Typical Operating Characteristics section).

Applications Information

Laser Safety and IEC 825

Using the MAX3946 laser driver alone does not ensure that a transmitter design is compliant with IEC 825. The entire transmitter circuit and component selections must be considered. Each user must determine the level of fault tolerance required by the application, recognizing that Maxim products are neither designed nor authorized for use as components in systems intended for surgical implant into the body, for applications intended to support or sustain life, or for any other application in which the failure of a Maxim product could create a situation where personal injury or death could occur.

Table 6. Register Summary

REGISTER FUNCTION/ ADDRESS	REGISTER NAME	NORMAL MODE	SETUP MODE	BIT NUMBER/ TYPE	BIT NAME	DEFAULT VALUE	NOTES
Transmitter Control Register Address = H0x05	TXCTRL	R	RW	5	TXDE_MD[1]	0	MSB deemphasis mode
		R	RW	4	TXDE_MD[0]	0	LSB deemphasis mode
		R	RW	3	TXEQ_EN	0	Input equalization 0: disabled, 1: enabled
		R	RW	2	SOFTRES	0	Global digital reset
		R	RW	1	TX_POL	1	Tx polarity 0: inverse, 1: normal
		R	RW	0	TX_EN	1	Tx control 0: disabled, 1: enabled
Transmitter Status Register 1 Address = H0x06	TXSTAT1	R	R	7 (sticky)	FST[7]	X	TX_POR \rightarrow TX_VCC lowlimit violation
		R	R	6 (sticky)	FST[6]	X	BMON open/shorted to VCC
		R	R	4 (sticky)	FST[4]	X	BMAX current exceeded or open/short to ground
		R	R	3 (sticky)	FST[3]	X	VTOUT+/ common-mode Iow-limit
		R	R	2 (sticky)	FST[2]	X	VTOUT++ low-limit violation
		R	R	1 (sticky)	FST[1]	X	BIAS open or shorted to ground
		R	R	0 (sticky)	TX_FAULT	X	Copy of FAULT signal in case POR bits 6 to 1 reset to 0

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Table 6. Register Summary (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline REGISTER FUNCTION/ ADDRESS \& \begin{tabular}{l}
REGISTER \\
NAME
\end{tabular} \& NORMAL MODE \& \begin{tabular}{l}
SETUP \\
MODE
\end{tabular} \& \begin{tabular}{l}
BIT \\
NUMBER/ \\
TYPE
\end{tabular} \& BIT NAME \& DEFAULT VALUE \& NOTES \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Transmitter Status Register 2 \\
Address = H0x07
\end{tabular}} \& \multirow{3}{*}{TXSTAT2} \& R \& R \& 3 (sticky) \& IMODERR \& X \& Warning increment result
> IMODMAX \\
\hline \& \& R \& R \& 2 (sticky) \& IBIASERR \& X \& Warning increment result
> IBIASMAX \\
\hline \& \& R \& R \& 1 (sticky) \& TXED \& X \& Tx edge detection \\
\hline \multirow{9}{*}{\begin{tabular}{l}
Bias Current Setting Register \\
Address = H0x08
\end{tabular}} \& \multirow{9}{*}{SET_IBIAS} \& R \& RW \& 7 \& SET_IBIAS[8] \& 0 \& \multirow[t]{9}{*}{MSB bias DAC} \\
\hline \& \& R \& RW \& 6 \& SET_IBIAS[7] \& 0 \& \\
\hline \& \& R \& RW \& 5 \& SET_IBIAS[6] \& 0 \& \\
\hline \& \& R \& RW \& 4 \& SET_IBIAS[5] \& 0 \& \\
\hline \& \& R \& RW \& 3 \& SET_IBIAS[4] \& 0 \& \\
\hline \& \& R \& RW \& 2 \& SET_IBIAS[3] \& 0 \& \\
\hline \& \& R \& RW \& 1 \& SET_IBIAS[2] \& 0 \& \\
\hline \& \& R \& RW \& 0 \& SET_IBIAS[1] \& 1 \& \\
\hline \& \& \multicolumn{2}{|l|}{Accessible through REG_ADDR \(=\mathrm{HO} 0 \times \mathrm{D}\)} \& 7 \& SET_IBIAS[0] \& 0 \& \\
\hline \multirow{9}{*}{\begin{tabular}{l}
Modulation \\
Current Setting \\
Register \\
Address = \\
H0x09
\end{tabular}} \& \multirow{9}{*}{SET_IMOD} \& R \& RW \& 7 \& SET_IMOD[8] \& 0 \& \multirow[t]{8}{*}{MSB modulation DAC} \\
\hline \& \& R \& RW \& 6 \& SET_IMOD[7] \& 0 \& \\
\hline \& \& R \& RW \& 5 \& SET_IMOD[6] \& 0 \& \\
\hline \& \& R \& RW \& 4 \& SET_IMOD[5] \& 0 \& \\
\hline \& \& R \& RW \& 3 \& SET_IMOD[4] \& 0 \& \\
\hline \& \& R \& RW \& 2 \& SET_IMOD[3] \& 1 \& \\
\hline \& \& R \& RW \& 1 \& SET_IMOD[2] \& 0 \& \\
\hline \& \& R \& RW \& 0 \& SET_IMOD[1] \& 0 \& \\
\hline \& \& \multicolumn{2}{|l|}{Accessible through REG_ADDR \(=\mathrm{HO} \times \mathrm{OC}\)} \& 7 \& SET_IMOD[0] \& 0 \& LSB modulation DAC \\
\hline \multirow{8}{*}{\begin{tabular}{l}
Maximum \\
Modulation \\
Current Setting \\
Register \\
Address = \\
H0x0A
\end{tabular}} \& \multirow{8}{*}{IMODMAX} \& R \& RW \& 7 \& IMODMAX[7] \& 0 \& \multirow[t]{8}{*}{MSB modulation limit

LSB modulation limit}

\hline \& \& R \& RW \& 6 \& IMODMAX[6] \& 0 \&

\hline \& \& R \& RW \& 5 \& IMODMAX[5] \& 1 \&

\hline \& \& R \& RW \& 4 \& IMODMAX[4] \& 0 \&

\hline \& \& R \& RW \& 3 \& IMODMAX[3] \& 0 \&

\hline \& \& R \& RW \& 2 \& IMODMAX[2] \& 0 \&

\hline \& \& R \& RW \& 1 \& IMODMAX[1] \& 0 \&

\hline \& \& R \& RW \& 0 \& IMODMAX[0] \& 0 \&

\hline \multirow{8}{*}{Maximum Bias Current Setting Register Address = HOxOB} \& \multirow{8}{*}{IBIASMAX} \& R \& RW \& 7 \& IBIASMAX[7] \& 0 \& \multirow[t]{8}{*}{MSB bias limit

LSB bias limit}

\hline \& \& R \& RW \& 6 \& IBIASMAX[6] \& 0 \&

\hline \& \& R \& RW \& 5 \& IBIASMAX[5] \& 1 \&

\hline \& \& R \& RW \& 4 \& IBIASMAX[4] \& 0 \&

\hline \& \& R \& RW \& 3 \& IBIASMAX[3] \& 0 \&

\hline \& \& R \& RW \& 2 \& IBIASMAX[2] \& 0 \&

\hline \& \& R \& RW \& 1 \& IBIASMAX[1] \& 0 \&

\hline \& \& R \& RW \& 0 \& IBIASMAX[0] \& 0 \&

\hline
\end{tabular}

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Table 6. Register Summary (continued)

REGISTER FUNCTION/ ADDRESS	REGISTER NAME	NORMAL MODE	SETUP MODE	BIT NUMBER/ TYPE	BIT NAME	DEFAULT VALUE	NOTES
Modulation Current Increment Setting Register Address = HOxOC	MODINC	R	R	7	SET_IMOD[0]	0	LSB of SET_IMOD DAC register address $=\mathrm{H} 0 \times 09$
		RW	RW	4	MODINC[4]	0	MSB MOD DAC two's complement LSB MOD DAC two's complement
		RW	RW	3	MODINC[3]	0	
		RW	RW	2	MODINC[2]	0	
		RW	RW	1	MODINC[1]	0	
		RW	RW	0	MODINC[0]	0	
Bias Current Increment Setting Register Address = HOxOD	BIASINC	R	R	7	SET_IBIAS[0]	0	LSB of SET_IBIAS DAC register address $=\mathrm{H} 0 \times 08$
		RW	RW	4	BIASINC[4]	0	MSB bias DAC two's complement LSB bias DAC two's complement
		RW	RW	3	BIASINC[3]	0	
		RW	RW	2	BIASINC[2]	0	
		RW	RW	1	BIASINC[1]	0	
		RW	RW	0	BIASINC[0]	0	
Mode Control Register Address = HOxOE	MODECTRL	RW	RW	7	MODECTRL[7]	0	MSB mode control
		RW	RW	6	MODECTRL[6]	0	
		RW	RW	5	MODECTRL[5]	0	
		RW	RW	4	MODECTRL[4]	0	
		RW	RW	3	MODECTRL[3]	0	
		RW	RW	2	MODECTRL[2]	0	
		RW	RW	1	MODECTRL[1]	0	
		RW	RW	0	MODECTRL[0]	0	
Pulse-Width Control Register Address = H0x0F	$\begin{gathered} \text { SET_- } \\ \text { PWCTRL } \end{gathered}$	R	RW	3	SET_PWCTRL[3]	0	MSB Tx pulse-width control LSB Tx pulse-width control
		R	RW	2	SET_PWCTRL[2]	0	
		R	RW	1	SET_PWCTRL[1]	0	
		R	RW	0	SET_PWCTRL[0]	0	
Deemphasis Control Register Address = H0x10	SET_TXDE	R	RW	5	SET_TXDE[5]	0	MSB Tx deemphasis
		R	RW	4	SET_TXDE[4]	0	
		R	RW	3	SET_TXDE[3]	0	
		R	RW	2	SET_TXDE[2]	0	
		R	RW	1	SET_TXDE[1]	0	
		R	RW	0	SET_TXDE[0]	1	LSB Tx deemphasis
Equalization Control Register Address = H0x11	SET_TXEQ	R	RW	2	SET_TXEQ[2]	0	Tx equalization
		R	RW	1	SET_TXEQ[1]	0	

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Figure 6. Simplified I/O Structures

Layout Considerations

The data inputs and outputs are the most critical paths for the device and great care should be taken to minimize discontinuities on these transmission lines between the connector and the IC. Here are some suggestions for maximizing the performance of the IC:

- The data inputs should be wired directly between the module connector and IC without stubs.
- The data transmission lines to the laser should be kept as short as possible and be designed for 50Ω differential or 25Ω single-ended characteristic impedance.
- An uninterrupted ground plane should be positioned beneath the high-speed I/Os.
- Ground path vias should be placed close to the IC and the input/output interfaces to allow a return current path to the IC and the laser.
- Maintain 100Ω differential transmission line impedance into the IC.
- Use good high-frequency layout techniques and multilayer boards with an uninterrupted ground plane to minimize EMI and crosstalk.
Refer to the schematic and board layers of the MAX3946 Evaluation Kit (MAX3946EVKIT) for more information.

Exposed-Pad Package and Thermal Considerations

The exposed pad on the 24-pin TQFN provides a very low-thermal resistance path for heat removal from the IC. The pad is also electrical ground on the IC and must be soldered to the circuit board ground for proper thermal and electrical performance. Refer to Application Note 862: HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages for additional information.

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Typical Application Circuit for 10GBASE-LRM

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Typical Application Circuit for 10GBASE-LR

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Chip Information

PROCESS: SiGe BiPOLAR

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
24 TQFN-EP	$\mathrm{T} 2444+3$	$\underline{\mathbf{2 1 - 0 1 3 9}}$	$\underline{\mathbf{9 0 - 0 0 2 1}}$

1Gbps to 11.3Gbps, SFP+ Laser Driver with Laser Impedance Mismatch Tolerance

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	3/10	Initial release	
1	5/11	Changed the title from 1.0625Gbps to 1Gbps; changed the edge speed from 20ps to 22ps in the General Description and Features; added the Package Thermal Characteristics section; updated graphs 2, 10, 16, and 17 and replaced graphs 6 and 7 in the Typical Operating Characteristics section; updated the BIAS (requires a $0.1 \mu \mathrm{~F}$ capacitor to VEET) and CSEL (pulled down to VEET rather than GND) pin descriptions in the Pin Description table; updated Figure 2 SCL and CSEL connections; changed the increment value range from -8 to +7 LSBs to -16 to +15 LSBs in the Bias Current DAC and Modulation Current DAC sections; changed the ground symbols to VEET in Figure 4; updated the Transmitter Control Register (TXCTRL) bit 2 (SOFTRES) description; updated Figure 6, Typical Application Circuit for 10GBASE-LRM, and Typical Application Circuit for 10GBASE-LR; added the land pattern no. to the Package Information table	$\begin{gathered} 1,2,7,8,10 \\ 11,12,14,17 \\ 25-28 \end{gathered}$

[^0]
OCEAN CHIPS
 Океан Электроники
 Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». JONHON
«JONHON» (основан в 1970 г.)
Разъемы специального, военного и аэрокосмического назначения:
(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)
«FORSTAR» (основан в 1998 г.)
ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:
(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

